PAGE: 1

PRINT DATE: 17.02.97

FAILURE MODES EFFECTS ANALYSIS (FMEA) - NON-CIL HARDWARE

NUMBER: M5-655-B031- X

SUBSYSTEM NAME: E . DOCKING SYSTEM

HEVISION:

0 FEBDEC, 19976

PART NAME
VENDOR NAME

PART NUMBER VENDOR NUMBER

LRU

: CONNECTOR

SWITCHING BOX (CSB)

SLIYU.842522.001

PART DATA

EXTENDED DESCRIPTION OF PART UNDER ANALYSIS:

CONNECTOR SWITCHING BOX (CSB) - ELECTROMECHANICAL INSTRUMENT

REFERENCE DESIGNATORS: 40V53A4

QUANTITY OF LIKE MEMS: 1

ONE

FUNCTION:

THE CONNECTOR SWITCHING BOX IS AN ELECTROMECHANICAL INSTRUMENT WHICH:

1) - SWITCHES TWO PAIRS OF KLEN-TYPE CONNECTORS VIA AN ELECTRIC OR MANUAL
DRIVE. THE ELECTRIC DRIVE HAS TWO ELECTRIC MOTORS ONE OF WHICH IS STANDBY. ONE SWITCHING UNIT PROVIDES OPERATION OF ONE OF TWO ELECTRIC MOTORS;

2) - PASSES THROUGH ITSELF CONTROL CIRCUITS (AS PASSIVE ELEMENT)

INPUT/OUTPUT FUNCTIONS:

ONE INPUT (8 CONNECTORS)
TWO OUTPUTS (8 CONNECTORS FOR EACH OUTPUT EVERYONE)
SWITCHING OF 254 CIRCUITS, OF WHICH: 86 CIRCUITS - TM, 168
CIRCUITS ARE FUNCTIONAL
THE TM DATA ENTERS "SHUTTLE" PANEL

ALL DOCKING MECHANISM FUNCTIONS EXCEPT FOR PYRO SEPARATION ARE TRANSFERED BY THE CONNECTOR SWITCHING BOX.

NOTE: CSB FMEA IS ONLY APPLICABLE FOR MISSIONS REQUIRING TRANSFER OF ELECTRICAL FUNCTIONS BETWEEN THE ODS DOCKING, MECHANISM AND SOME OTHER MECHANISM (IF.E. PMA1). IF THE SHUTTLE IS EQUIPPTED WITH THE "SOFT" DOCKING ASSEMBLY, THE USE OF THE CONNECTOR SWITCHING BOX IS NOT PLANNED.

PAGE: 2

PRINT DATE: 17.02.97

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- NON-CIL FAILURE MODE NUMBER: M5-6SS-B031- 01

REVISION#

0

FEBOSC, 19976

SUBSYSTEM NAME: E - DOCKING SYSTEM

LRU: CONNECTOR SWITCHING BOX
ITEM NAME: CONNECTOR SWITCHING BOX

CRITICALITY OF THIS FAILURE MODE: 1R3

FAILURE MODE:

LOSS OF ONE MOTOR OF THE SWITCHING MECHANISM

MISSION PHASE:

00

ON-ORBIT

VEHICLE/PAYLOAD/KIT EFFECTIVITY:

103 DISCOVERY

104 ATLANTIG

105 ENDEAVOUR (APPLIES ONLY WHEN THE

CSB IS INSTALLED)

CAUSE:

MULTIPLE INTERNAL COMPONENT FAILURES

CRITICALITY 1/1 DURING INTACT ABORT ONLY? NO

CRITICALITY 1R2 DURING INTACT ABORT ONLY (AVIONICS ONLY)? NO

REDUNDANCY SCREEN

A) PASS

B) PASS

C) PASS

PASS/FAIL RATIONALE:

A)

B)

C)

METHOD OF FAULT DETECTION:

INFORMATION ABOUT INITIAL AND FINAL POSITION OF THE SWITCHING BOX MECHANISM IS GOING TO THE "SHUTTLE" TM AND TO THE "SHUTTLE" PANEL; INFORMATION ABOUT MATING OF THE CONNECTORS IS GOING TO THE "SHUTTLE" TM.

MASTER MEAS, LIST NUMBERS:

P27X9001Y - CONNECTOR MATE XPI IND

PZ7X9002Y - CONNECTOR MATE XP2 IND

P27X9003Y - CONNECTOR MATE XP3 IND

P27X9004Y - CONNECTOR MATE XP4 IND

P27X9005Y - DDM POSITION P27X9006Y - PMA1 POSITION

CORRECTING ACTION:

1) PERFORM EVA TO MANUALLY SWITCH CONNECTORS:

2) INITIATION OF PYROBOLT SEPARATION:

age: 3

PRINT DATE: 17,02,97

AILURE MODES EFFECTS ANALYSIS (FMEA) — NON-CIL FAILURE MODE NUMBER: MS-6SS-B031- 01

AFTER THIRD FAILURE, CREW WOULD PERFORM EVA TO MANUALLY SWITCH ONNECTORS OF REMOVE 98 BOLTS FROM THE DOCKING BASE TO SEPARATE THE RBITER FROM ISS.

EMARKS/RECOMMENDATIONS:

WO REDUNDANT MOTORS ARE PROVIDED TO CONTROL SWITCHING OF CONNECTORS.
YET ONE MOTOR IS ACTIVATED AT A TIME. THE OTHER MOTOR IS IN STANDBY EDUNDANCY. PYRO CONTROL IS NOT SWITCHED.

- FAILURE EFFECTS -

) SUBSYSTEM:

) EFFECT - LOSS OF MOTOR REDUNDANCY ONLY.

) INTERFACING SUBSYSTEM(S):

GRADED CONNECTOR SWITCHING BOX CAPABILITY.

) MISSION:

) EFFECT ON MISSION,

) CREW, VEHICLE, AND ELEMENT(S):

> EFFECT FIRST FAILURE.

FUNCTIONAL CRITICALITY EFFECTS:

DRST CASE, SHUTTLE MECHANISM CONTROL: POSSIBLE LOSS OF CREW OR VEHICLE TER THREE FAILURES.

AST FAILURE (ONE MOTOR FAILS TO FUNCTION) - NO EFFECT, LOSS OF REDUNDANCY

COND FAILURE (SECOND MOTOR FAILS TO FUNCTION) - LOSS OF SWITCHING PABILITY RESULTING IN LOSS OF NOMINAL UNDOCKING CAPABILITY.

IRD FAILURE (FAILURE WITHIN PYRO SUBSYSTEM) - LOSS OF CAPABILITY TO PLEMENT PYRO-SEPARATION.

SIGN CRITICALITY (PRIOR TO OPERATIONAL DOWNGRADE, DESCRIBED IN F):

RATIONALE FOR CRITICALITY CATEGORY DOWNGRADE:

MOUGH THE CRITICALITY REMAINS UNCHANGED AFTER WORKAROUNDS

NSIDERATION (ALLOWED PER CR 5050107W), THEY ARE PROVIDING ADDITIONAL

ALT TOLERANCE TO THE SYSTEM.

THE SECOND THIRD FAILURE. THE CREW WOULD PERFORM EVA TO MANUALLY TOH CONNECTORS, IF UNABLE TO PERFORM THIS EVA (THIRD FAILURE). THEN LATE PYROBOLT SEPARATION, AFTER THE FOURTH FAILURE (FAILURE WITHIN PYROSYSTEM CREW WOULD PERFORM EVA TO OR REMOVE 96 BOLTS TO CIRCUMVENT WORST CASE "DESIGN CRITICALITY" EFFECT. IF UNABLE TO PERFORM EVA (FIFTH FAILURE). POSSIBLE LOSS OF CREW/VEHICLE DUE TO LOSS OF ALL OCKING CAPABILITY.

PRINT DATE: 17.02.97

FAILURE MODES EFFECTS ANALYSIS (FMEA) - NON-CIL FAILURE MODE

NUMBER: M5-655-8031- 01

· TIME FRAME ·

TIME FROM FAILURE TO CRITICAL EFFECT: DAYS

TIME FROM FAILURE OCCURRENCE TO DETECTION: SECONDS

TIME FROM DETECTION TO COMPLETED CORRECTIVE ACTION: HOURS

TIME REQUIRED TO IMPLEMENT CORRECTIVE ACTION LESS THAN TIME TO EFFECT? YES

RATIONALE FOR TIME TO CORRECTING ACTION VS TIME TO EFFECT: CREW WOULD HAVE SUFFICIENT TIME TO PERFORM EVA.

HAZARDS REPORT NUMBER(S): ORBI 401A

HAZARD DESCRIPTION: INABILITY TO SEPARATE ORBITER AND ISS.

- APPROVALS -

PRODUCT ASSURANCE ENGR. :

DESIGN ENGINEER

M. NIKOLAYEVA PL TUKAVIN

DESIGN ENGINEER

- A. DONCHENKO